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Setting Expectations



What “Will” and “Will not” Be Covered?

What will NOT be covered...

• Usage of uvm_hotplug(9)
• Application of uvm_hotplug(9)
• Refer man page of uvm_hotplug(9) for that

So what I am going to talk about...

• Using TDD and how it was applied to uvm_hotplug(9)

API
• Design changes in uvm_hotplug(9) and how they were

implemented
• Some interesting edge cases in uvm_hotplug(9)

development
• How we used atf(7) to do performance testing
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Background



The Old Implementation

• Uses a static array (vm_physmem[]) to hold segments

• Maximum size of this array is defined in the macro
VM_PHYSSEG_MAX

• Implementation can be seen in uvm_page.c

struct vm_physseg vm_physmem [VM_PHYSSEG_MAX] ;
i n t vm_nphysseg = 0;
# de f ine vm_nphysmem vm_nphysseg

We trace our steps into showing you how we converted this
array implementation to a rbtree(3) based implementation.
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Sanitising for uvm_hotplug(9)



...Without loosing sanity

It took more than one step...

• Creating a reference API

• Separating out the existing API

• Exposing the now separated API

• Testing the API in userspace
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Creating the Reference API

• There were no Tests to use as a reference

• We created an Idealised API to represent how the hotplug
API should look.

• Idealised API now acted as the baseline for the ATF tests
that should have been present in uvm(9)

• Chuck Silvers gave valuable feedback when we were
making this Idealised API

• NOTE: The “Idealised” API was not a part of the NetBSD
build system. However the tests were buildable with
atf(7)
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Separating the Existing API

• Going through code mostly in uvm_page.c and some MD
parts.

• Separated stuff into uvm_physseg.c and
uvm_physseg.h

• Retrofitted relevant parts into various sections of Idealised
API
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Exposing the new API

• Kept structures that need not be exposed globally to the
users in a uvm_physseg.c file

• The uvm_physseg.h file nicely exposes all the “valid”
operations that can be done on the various opaque
structures that is used in this API

• Exposed these utility functions via header file

• This refactoring effort resulted in actual buildable and
bootable code
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Testing in Userspace

Getting the kernel code to work in userspace

• Included the uvm_physseg.c file as part of the ATF test

• Stubbed / Re-implemented kernel API calls

• Stubbed / Re-implemented dependent API calls

• This is similar to Mocking APIs

An example of kmem_alloc() being stubbed

void ∗
kmem_alloc ( s i z e _ t s ize , km_f lag_t f l a g s )
{

return malloc ( s ize ) ;
}
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Design and Implementation



From Static to Dynamic

We went for R-B Tree as the data structure for dynamic
operations of insertion and deletion of memory segments.

• Implemented using the rbtree(3) part of NetBSD C
Library.

• No worries about maintaining a sorted order. Made easier
by RB_TREE_FOREACH()

• No more multiple strategies for maintaining the segments

• Less code clutter

• Neater and cleaner API, compared to queue(3) and
tree(3)
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Design Challenges

• Handle for accessing segment changed between static
array and R-B Tree.

• Index of array vm_physmem[] vs Pointer to struct

vm_physseg

• Modifying a fundamental part of the operating system
implies every single architecture port of NetBSD is
affected. (77 at the time of writing this)

• What are the performance implications?
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Implementing the R-B tree

• A new abstraction for the memory segment handles
uvm_physseg_t was introduced

• Utility functions, to ease the transition
• Before

for ( l c v = 0 ; l c v < vm_nphysmem ; l c v ++) {
seg = VM_PHYSMEM_PTR( l c v ) ;
freepages += ( seg−>end − seg−>s t a r t ) ;

}

• After
for ( bank = uvm_physseg_get_f i rs t ( ) ;

uvm_physseg_valid ( bank ) ;
bank = uvm_physseg_get_next ( bank ) ) {
freepages += uvm_physseg_get_end ( bank ) −

uvm_physseg_get_start ( bank ) ;
}

• An interesting utility function to note is
uvm_physseg_valid()
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Testing uvm_physseg via ATF



Generic ATF Runs

• Baseline set of ATF tests written for the original static array
implementation

• rbtree(3) implementation would work as long as the
baseline ATF Tests passed.

• Overall this did reduce considerably the amount of time we
needed to spend to make sure the old and the new
implementation were working as expected

• However, there were some interesting “Edge Cases”
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Case 1: uvm_page_physload()’s Prototype

• Function was originally designed to plug in segments of
memory range during boot time.

• If any errors happened it would generally print a message
and / or panic

• It was fine for uvm_page_physload() to return void

after its execution in this scenario

• But this was NOT FINE for the ATF Testing
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Case 1: uvm_page_physload()’s Prototype

So what did we do?

We added a return value of type uvm_physmem_t

Old Prototype
void
uvm_page_physload ( paddr_t , paddr_t , paddr_t , paddr_t , i n t ) ;

New Prototype
uvm_physmem_t
uvm_page_physload ( paddr_t , paddr_t , paddr_t , paddr_t , i n t ) ;

The tests became more concise, more readable and had
unwanted assumptions removed from within.
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Case 2: Immutable handles

• A particular test case uvm_physseg_get_prev kept
failing for static array implementation but not R-B Tree
implementation

• For the static array implementation we were using the
VM_PSTRAT_BSEARCH strategy

• The test failed only if segments being inserted into the
system out-of-order, this meant that the page frames of
the segments that were inserted in chunks were not in a
sorted order

• Consequence of changing the way the handle of segment
was being referenced
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Case 2: Immutable handles

Static array implementation
+−−−−−+−−−−−+−−−−−+ +−−−−−+−−−−−+−−−−−+

Segment I n f o | B | | | | A | B | |
+−−−−−−−−−−−−−−−−−+ +−−> +−−−−−−−−−−−−−−−−−+

Index | 0 | 1 | 2 | | 0 | 1 | 2 |
( uvm_physseg_t ) +−−−−−+−−−−−+−−−−−+ +−−−−−+−−−−−+−−−−−+

R-B Tree implementation
+−−−+ +−−−+
| B | +−−−−+ B |
+−−−+ +−−> | +−−−+

|
|

+−−−+ +−−−+ +−+−+ +−−−+
| | | | | A | | |
+−−−+ +−−−+ +−−−+ +−−−+

Note: The pointer to the nodes are the handles (uvm_physseg_t)
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Case 2: Immutable handles

• In order to separately identify this property of mutability we
added a new test case in ATF
uvm_physseg_handle_immutable

• This test is expected to fail for static array implementation

• This test is expected to pass for R-B tree implementation

• This is important to notify the users of the old API and new
API about the potential pitfall of assuming the integrity of
the handle when writing new code.
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Booting the Kernel



Case 1: The init dance

The first boot resulted in a kernel PANIC

• We quickly identified that kmem(9) is not available until
uvm_page_init() has done with all the initialization

• Maintain a minimal “static array” whose size is
VM_PHYSSEG_MAX and once the init process is over,
switch over to the kmem(9) allocator

• uvm.page_init_done was used to distinguish when to
switch over to kmem(9)

• We wrote wrappers for the kmem(9) allocators.
• uvm_physseg_alloc() and uvm_physseg_free()

• Wrote up the test cases for these first, allowing for a
smooth implementation

18
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Case 2: Fragmentation of segments

What exactly is “fragmentation of a segment”?

The pgs[] is contained in a given segment, allocated by
kmem(9) allocators

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Segment A |

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

So what happens to pgs[] if we “unplug” a section?
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Case 2: Fragmentation of segments

How did we solve this?

• Use the extent(9) memory manager to manage the
pgs[] array

• We applied the “init dance” technique to solve Boot time vs
non-Boot time allocation of slabs

• Once again extensive ATF tests that helped us out in
minimising the downtime from debugging the code
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Performance evaluation



Designing the test framework

...so we leveraged ATF to do this

• The most frequent opeation is uvm_physseg_find()

• Copied over the PHYS_TO_VM_PAGE() macro and the
related code from uvm_page.c

• Plug in segments and then do multiple calls to
PHYS_TO_VM_PAGE()

for ( i n t i = 0 ; i < 100; i ++) {
pa = ( paddr_t ) random ( ) % ( addr_t ) ctob (VALID_END_PFN_1 ) ;
PHYS_TO_VM_PAGE( pa ) ;

}

• After some tweaking around we managed to write up the
tests varying from 100 calls to 100 Million calls
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Designing the test framework

Things to Note

• This methodology is not a perfect load test since there is a
call to random()

• This will cumulatively add up to the runtime of the function
we are trying to load test.

• All of the ATF tests have ATF_CHECK_EQ(true, true)

at the bottom of the test indicating the test will never fail

• This is done because the test is NOT a check of
correctness
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Designing the test framework

We implemented two types of test strategies

• Fixed size segment: Here we plug in a “fixed” size
segment. And pick a random address to do the
PHYS_TO_VM_PAGE(). The variable here was the amount
of calls done to PHYS_TO_VM_PAGE()

• Fragmented segment: Here we plug in a known size
segment. After which we start unplugging areas of the
memory. Then we pick a random address to do
PHYS_TO_VM_PAGE(). Here the variable was the memory
size meaning, the bigger memory segment the more
fragmented it was.
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Designing the test framework

An example run of these tests with the standard atf-run

piped through atf-report will have a similar output.

Note: In the results 100 consecutive runs were done and then the average, minimum

and maximum runtimes were calculated.
t_uvm_physseg_load ( 1 / 1 ) : 11 t e s t cases

uvm_physseg_100 : [0.003286 s ] Passed .
uvm_physseg_100K : [0.010982 s ] Passed .
uvm_physseg_100M : [8.842482 s ] Passed .
uvm_physseg_10K : [0.004398 s ] Passed .
uvm_physseg_10M : [0.954270 s ] Passed .
uvm_physseg_128MB : [2.176629 s ] Passed .
uvm_physseg_1K : [0.002702 s ] Passed .
uvm_physseg_1M : [0.094821 s ] Passed .
uvm_physseg_1MB : [0.984185 s ] Passed .
uvm_physseg_256MB : [2.485398 s ] Passed .
uvm_physseg_64MB : [0.914363 s ] Passed .

[16.478686 s ]

Summary for 1 t e s t programs :
11 passed t e s t cases .
0 f a i l e d t e s t cases .
0 expected f a i l e d t e s t cases .
0 skipped t e s t cases . 24



Benchmark results



Calls to PHYS_TO_VM_PAGE()

Test Name Average Minimum Maximum
uvm_physseg_100 0.004599 0.003286 0.010213
uvm_physseg_1K 0.002740 0.001991 0.005747
uvm_physseg_10K 0.003491 0.002836 0.007941
uvm_physseg_100K 0.011424 0.009388 0.017161
uvm_physseg_1M 0.093359 0.079128 0.138379
uvm_physseg_10M 0.892827 0.813503 1.172205
uvm_physseg_100M 8.932540 8.434525 11.616543

Table 1: R-B tree implementation

Test Name Average Minimum Maximum
uvm_physseg_100 0.004714 0.003511 0.013895
uvm_physseg_1K 0.002754 0.002088 0.005318
uvm_physseg_10K 0.003585 0.002666 0.005271
uvm_physseg_100K 0.011007 0.009199 0.016627
uvm_physseg_1M 0.086208 0.076989 0.116637
uvm_physseg_10M 0.843048 0.782676 0.980598
uvm_physseg_100M 8.434760 8.128623 9.132065

Table 2: Static array implementation
25



Calls to PHYS_TO_VM_PAGE()

Figure 1: A closer look at the 10M and 100M calls side-by-side
26



Calls to PHYS_TO_VM_PAGE()

Since the 100M calls, took the most amount of time, we did some

very specific analysis on this.

We calculated the Average, Standard Deviation (Population) and

Margin of Error with a 95% confidence interval.

In a total of 100 runs, the random() function contributed to roughly 2.03 seconds for

the average runtime, for a 100 Million calls to PHYS_TO_VM_PAGE().

Static Array R-B Tree
Average 8.43476 8.93254
Standard Deviation 0.19331 0.41553
Margin of Error ±0.03789 ±0.08144

Table 3: Comparison of the average, standard deviation and margin
of error for the 100M calls to PHYS_TO_VM_PAGE()

27



Calls to PHYS_TO_VM_PAGE()

Figure 2: Clearly there is a 5.59% degradation in performance with
the R-B tree implementation 28



Calls to PHYS_TO_VM_PAGE() after fragmentation

• Number after test name indicates the amount of memory
on which fragmentation was done

• Fragmentation was done by uvm_physseg_unplug()
• After unplug was completed PHYS_TO_VM_PAGE() was

called 10M (million) times for every test.

Test Name Average Minimum Maximum
uvm_physseg_1MB 1.015810 0.941942 1.361913
uvm_physseg_64MB 0.958675 0.877151 1.279663
uvm_physseg_128MB 2.155270 2.024838 2.866540
uvm_physseg_256MB 2.550920 2.360252 3.736369

Table 4: Comparison of average, minimum and maximum execution
times of various load tests with uvm_hotplug(9) enabled on
fragmented memory segments.
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Calls to PHYS_TO_VM_PAGE() after fragmentation

Figure 3: R-B tree performance for 10M Calls to
PHYS_TO_VM_PAGE() after fragmentation at every 8 PFN 30



Conclusion and future work



Retrospective

Looking back...

• rumpkernel(7) based testing?

• Code coverage, maybe?

• Performance testing in an actual live kernel implementation
with dtrace(1)

31



Conclusion

• Systems Programming can be made much less stressful
by using existing Software Engineering techniques.

• The availability of general purpose APIs such as
rbtree(3) and extent(9) in the NetBSD kernel, which
makes implementation much less headache.
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Future work

• We would like to encourage other NetBSD developers to
use this API to write hotplug/ unplug drivers for their
favourite platforms with suitable hardware.

• We also encourage other BSDs to pick up our work - since
this will clean up the current legacy implementations which
are pretty much identical.
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Thank you

• The NetBSD Foundation <http://www.NetBSD.org/foundation> generously
funded this work.

• KeK <hello@kek.org.in> provided a cozy space right next to Kovalam Beach for
us to hammer out the implementation.

• Chuck Silvers <chs@NetBSD.org> reviewed and helped refine the APIs. He
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critical feedback during the development and integration timeframe.
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• Nick Hudson <skrll@NetBSD.org> contributed bugfixes, testing and integration
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Thank you

... And to all others who helped us along the way and we may
have accidentally missed out or forgot to mention.

And of course the audience for being here and patient while
listening to the talk.
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Questions
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The End
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