
Developing CPE Routers based on NetBSD:
Fifteen Years of SEIL

Masanobu SAITOH <msaitoh@netbsd.org>

Hiroki SUENAGA <hsuenaga@iij.ad.jp>

1

mailto:msaitoh@netbsd.org

contents

1. Our router and the usage

2. The difference between NetBSD and SEIL

3. New product development
– Usual workflow

– Changing NetBSD’s base version

4. Conclusion
– Problems

– Solutions

– Current status

2

1. Our router and the usage

3

CPE router for business use

• Customer Primises Equipment

• Locations:

– Branch office, satellite office

– Shops

• Convenience stores

• Fast food stores

• Gas stations

– Data center

• To terminate a lot of IPsec tunnels

4

A lot of requirements…
• Complicated network

– A lot of routers
– Tunneling
– Redirect, proxy
– Redundancy

• A lot of functions
– Ethernet, ISDN, Mobile, WiFi
– IPv4, IPv6
– PPPoE, DHCP
– NAT, NAPT
– Filter, firewall
– IPsec, SSTP

– PPTP, L2TP, L2TPv3
– Dynamic routing
– Policy routing
– Transparent proxy
– VRRP
– QoS

• Manageability
• Reliability (e.g. MTBF)
• Stability

5

… make configuration very difficult.

SEIL Project
• “SEIL” is a brand name of router products.

• “Simple and Easy Internet Life”

– To make management simple and easy

• Configurations

• Operations

• Monitoring

• Started in 1997

6

By the way, 2014 -1997 = ?

Developing CPE Routers based on NetBSD:
Fifteen Years of SEIL

Masanobu SAITOH <msaitoh@netbsd.org>

Hiroki SUENAGA <hsuenaga@iij.ad.jp>

7

Seventeen

mailto:msaitoh@netbsd.org

Why an ISP develops router?

• To manage CPEs from ISP polietry.

• To develop new service with our own router.

8

Router Products
Wan Interfaces Lan Interfaces CPU(Model) Released

128Kbps BRI 10Mbps Ethernet Hitachi SH2(SH7604)@20MHz Aug 1998

1.5Mbps PRI 10Mbps Ethernet Hitachi SH3(SH7709A)@133MHz Dec 1999

128Kbps BRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001

1.5Mbps PRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001

100Mbps Ethernet 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Nov 2001

25Mbps ATM 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2002

1Gbps Ethernet 1Gbps Ethernet Freescale PowerPC G4(MPC7745)@600MHz Jun 2003

100Mbps Ethernet 100Mbps Ethernet Intel XScale(IXP425)@400MHz Dec 2003

1Gbps Ethernet
USB 3G/LTE Modem

1Gbps Ethernet Cavium Octeon(CN3010)@300MHz Feb 2008

1Gbps Ethernet
USB 3G/LTE Modem

1Gbps Ethernet Cavium Octeon(CN3120)@500MHz Feb 2008

1Gbps Ethernet
USB 3G/LTE Modem
128Kbps BRI

100Mbps Ethernet Intel XScale(IXP432)@400MHz Oct 2008

1Gbps Ethernet
USB 3G/LTE Modem

1Gbps Ethernet
802.11n Wireless LAN

Marvell Kirkwood(88F6281)@1.2GHz Feb 2013

9

NetBSD

MMU-less

SMF
• SEIL Management Framework

– Zero Configuration.
– Manage Network via server

• We started this service in 2003.

10

Image of management

11

Mobile carrier network

Fixed line
Carrier network

The
Internet Wide Area Ethernet

IP-VPN

User
Interface

X

NAPT

Cloud service provider
Admin

DMZ

UserA: remote access VPN

UserB:LAN type VPN

UserC:
Sensor NW UserD: big Internet VPN UserE:firewall

UserF:
Multi bases private network

SMF

• Manage different types of network in one system

An example network
• Disaster recovery

• Mobile backup

12

Mobile backbone

NGN carrier network NGN carrier network

branch branch branch branch

IIJ

East data center West data center

IIJ GW

Wide Area Ethernet

2. The difference between NetBSD and SEIL

13

Network devices

• Device drivers

– ISDN(BRI)

– 3G, LTE modem

• Emulate serial port

• Emulate Ethernet device

– Ethernet switch

• will be described in the next presentation

14

Daemon for P2P link

• connmgrd(8)

– Connection manager daemon

– Manipulate various type of P2P connections

• ISDN

• 3G, LTE modem

• L2TP

– Status, statistics

15

About link status

• Don’t enqueue outgoing packets if the link is
down.

– Because very old enqueued packet might cause a
trouble after the link up

– Not to waste mbuf resources

16

Pseudo devices

• IPsec tunnel interface

– Routing-based IPsec

– will be described in the next presentation

• Hyper-V driver

– FreeBSD have another implementation.

– At that time, FreeBSD’s driver didn’t exist.

– Duplicated implementation

• L2TPv3

– described later.

17

Extending IP networking stack

• iipf and iipfnat

– IIJ original IP filter and NAT

– Filter rule optimization

• will be described in the next presentation

• IPsec

– Added caching layer on Security Policy Database
(SPD) and Security Assocication Database(SAD).

• will be described in the next presentation

18

Cryptographic accelerator

• We have our own implementation

• The strategy is the same as opencrypt and
FAST_IPSEC (originally implemented in
OpenBSD)

– Duplicated implementation

• Abandoned our implementation and switched
to use NetBSD’s.

19

Implementing new network protocols

• Tunneling protocols

– PPTP

– L2TP

• PIPEX

– An in-kernel cut-through forwarding mechanism

– Already merged to OpenBSD

20

L2TPv3

• A kind of Ethernet encapsulation and
tunneling protocol described in RFC3931.

• The pseudo device acts as a kind of Ethernet
device, and can be added to an Ethernet
bridging group.

• Virtual Ethernet HUB

– Multiple L2TPv3 interfaces can be added into one
bridging group

21

MAP

• draft-ietf-softwire-map-xx

• One of experimental implementations of new
Internet drafts.

• We are so interested in new protocols.

22

getifaddrs()

• Many pseudo network interface to provide
various tunnel connections

• Add cache layer on getifaddrs()

• Add getiffaddrs_up() to get list of interfaces
which link-state is up

23

sendfromto, recvfromto

• Problem

– A router has many addresses (including alias
addresses).

– When a request received at an address, the reply
packet’s source address should be the dest
address of the request packet.

– Usually a deamon make as many number of
sockets as the number of addresses.

• This way will be complex if the number of addresses is
big or an address changed.

24

sendfromto, recvfromto (2)

• Functions:
– recvfromto(3)

• like recvfrom(2). It can receive packet with destination
address and destination port simultaneously

– sendfromto(3)
• like sendto(2). It can send packet with specified source

address and source port simultaneously

• Implemented with setsockopt(IP_PKTINFO)
– Add IP_PKTINFO

• Linux and FreeBSD have it.

• NetBSD and OpenBSD doesn’t have it.

25

Manageability of UNIX like OS based CPE

• This is not Free UNIX like system but CPE, so
the following things are important:
– Automatic

• Changes should be automatically propagated to other
functions.

– Easy to understand
• without based OS’s knowledge

• what happened

• whether an event is problem or not

– Stable
• Not panic. Strong against attack from others (e.g. DoS).

26

Automatic
• Changes are automatically propagated by …

27

kernel

library

web UI
telnet

UI daemons

kernel

mruby

SMFv2
daemon

mruby
script daemons

web
browser

telnet
ssh

serial
SMF SMF

• Abandoned
standalone web
and telnet UI

• Use mruby for
configurations

old new Written in C language

Easy to understand(1)
• Rename interface names

– For usability

• e.g. wm0, bge0 -> lan0, lan1…

– Some different implementations

A) Use fixed table

B) Automatically rename around if_init()

C) Use ifconfig(8)
– The latest CPE uses this way

– “ifconfig mvgbe0 rename ge0”

28

Easy to understand(2)

• Log

– Add new logs

• For example, if a link goes down, send a log with
LOG_CRIT.

– Change log level if it’s inappropriate

– Modify log text if it’s inappropriate

29

Easy to understand(3)

• For debugging

– Our CPE has no storage device, so it doesn’t dump
a core. Instead, the kernel makes the userland
program’s information (include stack trace!) and
records it into dmesg buffer.

– The panic() function is extended and it records
some inportant information into dmesg buffer.

30

stable(1)

• Heavy Ethenet rx interrupt and MCLGETI()

– We have made a few implementation to avoid live
lock so far.

• Stop rx interrupt when live lock is detected.
– It’s little difficult when interrupt will be enabled again.

• How to detect live lock
– watermark in protocol queues

– CPU utilization

– It was very difficult, so I switched to use
OpenBSD’s MCLGETI().

31

3. New product development

32

Usual workflow(1)

1. Create plain new port of NetBSD

– e.g. copy arch/evbarm to arch/seil6 and modify it.

2. Add new device driver if it’s needed.

3. Run as plain NetBSD machine and make it
stable.

4. Create customized ramdisk of the product.

5. Launch an NTP daemon and check the clock
jitter and drift.

33

Usual workflow(2)

6. Check if dmesg buffer isn’t cleared after reboot.

7. Send/receive various size of Ethernet frames to
find bugs. Frame with vlan tag often reveals
MTU handling problem of the Ethernet driver.

8. Check counters. If an value isn’t visible, add it. If
an counter is not incremented on some cases,
fix it.

9. Throttling log. Some logs might be frequently
generated.

34

Usual workflow(3)

10.Measure primitive performance (e.g. CPU(INT,
FLOAT), memory, cryptographic, systemcall).
Tune up if it can.

11.Measure total performance. Tune up if it can.

– Bridge

– IP forwarding

– Filter, nat

– IPsec

– etc.

35

Usual workflow(4)

12.Do tests.

13.Release!

36

Changing NetBSD’s base version(1)

• The base version of NetBSD is always release
branch, not –current.

• Sometimes we upgrade NetBSD’s base version
when we make a new product.

• The frequency is very low. For example, we
currently use the following two branches:

– netbsd-3

– netbsd-6

37

Changing NetBSD’s base version(2)

• Upgrading is very heavy work

– Check the difference between old branch and new
branch.

– Make patches and merge into new branch.

– Sometimes the same function that we wrote was
added into NetBSD. We have to choose one of
them.

38

conclusion

39

Problems(1)
• We can’t feedback to NetBSD well

– We are almost always busy.

– Language problem

• Japanese!

• Sometime discussion is required.

– Some people are shy :-)

Problems(2)

• On some cases, it’s difficult to feedback codes
because we are developing software not
based on –current but based on release
branch (e.g. netbsd-3, netbsd-6)

• Sometimes other people develop the same
function. (The same function in different
implementation)

Solutions(1)

• Ideas

1. Increase number of NetBSD developers in IIJ.

2. Make a collaboration space outside of IIJ.

3. Develop new function based on –current first if
we can.

42

Solutions(2)

• Yet another cvs2git

– We tried some tools but all of them don’t satisfy
our requirement.

– Our requirement is:

• The following branches can be converted and
synchronized correctly.
– maintrunk

– netbsd-3 (our products use it)

– netbsd-6 (our product uses it)

– rmind-smpnet

43

Current status

• ryo@n.o is working to make a tool to
convert/sync from NetBSD’s cvs repository to
git.

– The jobs will be finished in a few weeks.

– When you won’t see our tree in a few weeks,
blame him 

mailto:ryo@n.o

Thank you.

45

