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About myself

● Pierre Pronchery, planet Earth
● DeforaOS Project since 2004
● IT-Security consultant since 2006
● NetBSD developer since May 2012
● Working on NetBSD with Git through the EdgeBSD 

community since August 2013
● Co-founder of Defora Networks since July 2016: 

https://www.defora.net/

https://www.defora.net/


  

Introduction

● pkgsrc is a multi-platform:
– Software distribution
– Build framework
– Package manager

● Default source for packaged software on 
NetBSD, SmartOS, Minix...

● Supports many more!
– Over 17.000 packages on 17+ platforms



  

Motivation

● As illustrated again in the 
news this week, a “cyber-
war” is raging right now

● We have a responsibility 
towards our users

● pkgsrc offers a great 
opportunity for hardening 
a complete software setup



  

Agenda

1.Security management
Processes in place

2.Hardening features
Technical measures

3.Future work
Perspectives for 
improvement

Questions & Answers



  

1. Security management

1.Teams in charge
● Security Team
● Release Engineering Group

2.Vulnerability assessment database
● Usage from source
● Auditing binary packages

3.Maintenance of the stable release
● Security patches
● Long-Term Support (LTS)



  

pkgsrc Security Team

● List of duties:
– Handles security issues relevant to pkgsrc:

pkgsrc-security@NetBSD.org
http://pkgsrc.org/pkgsrc-security_pgp_key.asc

– Maintains the vulnerability database:
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vu
lnerabilities.bz2

mailto:pkgsrc-security@NetBSD.org
http://pkgsrc.org/pkgsrc-security_pgp_key.asc
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.bz2
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.bz2


  

Vulnerability database

● Assembled from:
– Release notes from upstream packages
– Security Advisories from vendors (Secunia...)
– Announcements on public mailing-lists (OSS-Security...)
– Erratas or advisories from other distributions, 

governmental or technical organisations (MITRE, 
CERT...)

● Cryptographically signed (PGP)



  

Vulnerability assessment

● Configure updates in /etc/daily.conf:

fetch_pkg_vulnerabilities=YES
● To fetch manually:

# pkg_admin fetch-pkg-vulnerabilities 
-s

● To audit the packages installed:

# pkg_admin audit



  

Vulnerability assessment
(from sources)
sysutils/xenkernel45$ make install
=> Bootstrap dependency digest>=20010302:
found digest-20160304
===> Checking for vulnerabilities in
xenkernel45-4.5.5nb1
Package xenkernel45-4.5.5nb1 has a information-leak 
vulnerability, see 
http://xenbits.xen.org/xsa/advisory-200.html
[…]
ERROR: Define ALLOW_VULNERABLE_PACKAGES in 
/etc/mk.conf or IGNORE_URL in pkg_install.conf(5) if 
this package is absolutely essential.
*** Error code 1



  

Vulnerability assessment
(binary packages)
# pkg_add wireshark-2.2.1.tgz
Package wireshark-2.2.1 has a denial-
of-service vulnerability, see 
https://www.wireshark.org/security/wn
pa-sec-2016-58.html
[…]
pkg_add: 1 package addition failed



  

Vulnerability assessment
(binary packages)
● In /etc/pkg_install.conf:

CHECK_VULNERABILITIES=always

● Alternatively, set to interactive to be prompted:

[…]
Do you want to proceed with the 
installation of wireshark-2.2.1 [y/n]?
n
Cancelling installation
pkg_add: 1 package addition failed



  

Security Team members

● Alistair G. Crooks <agc@>
● Daniel Horecki <morr@>
● Sevan Janiyan <sevan@>
● Thomas Klausner <wiz@>
● Tobias Nygren <tnn@>
● Ryo Onodera <ryoon@>
● Fredrik Pettai <pettai@>
● Jörg Sonnenberger <joerg@>
● Tim Zingelman <tez@>



  

Release Engineering Group

● List of duties:
– Manage stable branches

https://releng.netbsd.org/cgi-bin/req-pkgsrc.cgi
– Process pullup requests

Including security issues
https://www.netbsd.org/developers/releng/pullups.html#
pkgsrc-releng

– Schedule freeze periods
https://www.pkgsrc.org/is-a-freeze-on/

https://releng.netbsd.org/cgi-bin/req-pkgsrc.cgi
https://www.netbsd.org/developers/releng/pullups.html#pkgsrc-releng
https://www.netbsd.org/developers/releng/pullups.html#pkgsrc-releng
https://www.pkgsrc.org/is-a-freeze-on/


  

Release Engineering Group



  

Stable releases

● Stable releases happening every quarter:
– 2016Q4 no longer maintained
– 2017Q1 latest stable
– 2017Q2 in progress (HEAD)

● Joyent provides Long-Term Support (LTS)
– joyent/feature/backports/20XXQ4

https://github.com/joyent/pkgsrc
– Focus on SmartOS

https://github.com/joyent/pkgsrc


  

Release Engineering Group members

● Ryo Onodera <ryoon@>
● Fredrik Pettai <pettai@>
● Eric Schnoebelen 

<schnoebe@>
● Benny Siegert 

<bsiegert@>
● S.P. Zeidler <spz@>



  

2. Hardening features

1.Package signatures

2.Stack Smashing 
Protection (SSP)

3.Fortify

4.PIE (for ASLR)

5.RELRO and 
BIND_NOW



  

Package signatures

● Support introduced initially in 2001:
– Based on X.509 certificates or GnuPG

● Ensures authenticity and integrity:
– Critical when installing binaries over HTTP or FTP

● Used by Joyent on SmartOS since 2014Q4:
– Patch to use libnetpgpverify instead of GnuPG

● Still using GnuPG to generate packages



  

Package signatures

● Chicken and egg problem with GnuPG:
– Not available in base
– Needs to be installed as a package to verify itself

● Adding support for netpgp instead:
– Available in NetBSD’s base system
– Command line wrapper available (gpg2netpgp)

– Still requires some patches (work in progress)
– Security issue remaining with detached signatures



  

Package signatures (creation)

● Generate a key for the user building packages:
$ gpg --gen-key

● In /etc/mk.conf:
SIGN_PACKAGES=gpg

● Optionally, in /etc/pkg_install.conf:
GPG=/usr/pkg/bin/gpg
#GPG=/usr/local/bin/gpg2netpgp
GPG_SIGN_AS=DEADBEEF

● Then use pkgsrc from source normally



  

Package signatures (installation)

● Import the key for the user installing packages:
# gpg --import

● In /etc/pkg_install.conf:
VERIFIED_INSTALLATION=always

● Then use pkgsrc normally:
# pkg_add socat
gpg: Signature made Thu Nov  3 14:44:06 2016 CET 
using RSA key ID CC245448
gpg: Good signature from "EdgeBSD test packages 
(khorben) <root@edgebsd.org>"
Primary key fingerprint: 968C 30DE B3C9 C147 203A  
2E6E 5FFC 2014 CC24 5448

mailto:root@edgebsd.org


  

Stack Smashing Protection (SSP)

● Mitigation: reduce the impact and exploitation of 
Buffer Overflow vulnerabilities

● Different memory layout (stack variables)
● Addition of a « canary » value

– Marker to detect memory corruption
– Slight performance penalty
– Controlled crashes instead of Code Execution



  

Stack Smashing Protection (SSP)

● Supported in pkgsrc for Linux (x86), FreeBSD (x86), 
and NetBSD

● Enabled in /etc/mk.conf:
PKGSRC_USE_SSP=yes

● Sets a compilation flag, in the case of GCC and clang:
-fstack-protector
(protects only some functions)

● Requires the package to support CFLAGS
Some packages still do not ☹



  

Stack Smashing Protection 
(challenges)
● Only protects C/C++ programs and interpreters

– JIT compilation is not protected
● Supporting more flags:
-fstack-protector-all
(protects every function, now supported)
-fstack-protector-strong
(balanced, requires patch from Google)

● Add support for more compilers and platforms



  

Stack Smashing Protection (validation)

● To confirm a binary was successfully compiled with 
SSP:

$ nm hello
[…]
         U __stack_chk_fail
00600f00 B __stack_chk_guard

This is specific to GCC on NetBSD
● Enabled by default in OpenBSD (2003), Fedora and 

Ubuntu Linux (2006), DragonFlyBSD (2013)



  

Fortify

● Automatically adds boundary checks:
sprintf(), strncat(), memmove()...

● Completely mitigates some Buffer Overflows
● Involves support from the libc (system headers)

– Negligible performance impact
– Controlled crashes instead of memory corruption



  

Fortify

● Supported in pkgsrc for Linux and NetBSD (GCC)
● Enabled in /etc/mk.conf:
PKGSRC_USE_FORTIFY=yes

● Sets a pre-processing flag, in the case of GCC:
-D_FORTIFY_SOURCE=2

● Requires the package to support CFLAGS
Just like SSP ☹



  

Fortify (challenges)

● Only protects C/C++ programs and interpreters
– Again JIT compilation is not protected
– Requires an optimization level of 1 or more (e.g. -O2)

● Supporting more levels now possible in pkgsrc:
-D_FORTIFY_SOURCE=l
(protects fewer cases)
-D_FORTIFY_SOURCE=2
(some conforming programs might fail)

● Add support for more compilers and platforms



  

Fortify (validation)

● To confirm a binary was successfully compiled with 
Fortify:

$ nm hello
[…]
         U __sprintf_chk

This is specific to GCC on NetBSD
● Enabled by default in Ubuntu Linux and Android



  

Position-Independent Executables 
(PIE)
● Necessary companion to PaX ASLR (Address Space 

Layout Randomization)
● PaX ASLR enabled by default in NetBSD 8 (incoming!)
● Allow compiled binaries to be re-positioned 

dynamically in memory
● Makes exploitation more difficult (requires a memory 

leak including pointer values)
● Involves compilation and linking phases



  

Position-Independent Executables

● Supported in pkgsrc for NetBSD and GCC
● Enabled in /etc/mk.conf:
PKGSRC_MKPIE=yes

● Sets a compilation flag, in the case of GCC:
-fPIC

● Requires the package to support both CFLAGS and 
LDFLAGS as well (with a caveat)
Even stricter than SSP and Fortify ☹



  

Position-Independent Executables 
(challenges)
● The compilation flag should really be -fPIE for 

executables
● The linking phase must be completed with -pie 

but only for executables so not directly through 
LDFLAGS

● Currently implemented in the GCC wrapper
● Not supported in cwrappers yet (patch in review)



  

Position-Independent Executables 
(advantages)
● Packages linked but not compiled correctly will fail to 

build
● Great way to know which packages do not implement 

flags as they should
● Program crashes usually reveal silent bugs
● Can be combined with paxctl otherwise:
NOT_PAX_ASLR_SAFE
NOT_PAX_MPROTECT_SAFE
(see mk/pax.mk)



  

Position-Independent Executables 
(validation)
● To confirm an executable binary is a PIE:

$ file hello-pie
ELF 64-bit LSB shared object, x86-64, 
version 1 (SYSV), dynamically linked (uses 
shared libs), for NetBSD 7.0, not stripped

$ file hello-nopie
ELF 64-bit LSB executable, x86-64, version 
1 (SYSV), dynamically linked (uses shared 
libs), for NetBSD 7.0, not stripped



  

RELRO and BIND_NOW

● RELRO protects ELF executable programs from 
tampering at run-time

● Makes exploitation harder by reducing the attack 
surface through relocations

● Benefits from immediate binding with BIND_NOW
● Performance penalty when starting big programs
● Involves the linking phase



  

RELRO and BIND_NOW

● Supported in pkgsrc for Linux and NetBSD (GCC)
● Enabled in /etc/mk.conf:
PKGSRC_USE_RELRO=yes

● Sets two linking flags, in the case of GCC:
-Wl,-z,relro -Wl,-z,now

● Requires the package to support LDFLAGS



  

RELRO and BIND_NOW (challenges)

● More granularity is now supported:
– Full, or
– Partial (without BIND_NOW)

● Some packages break at run-time with full RELRO 
(e.g. Xorg)

● Could be adapted to more platforms
● Same issue as before with support from packages 
☹



  

RELRO and BIND_NOW (validation)

● To confirm a binary was built with RELRO and BIND_NOW:

$ objdump -x hello
[…]
Program Header: […]
   RELRO off    0x00000d68
         vaddr  0x00600d68
         paddr  0x00600d68 align 2**0
         filesz 0x00000298
         memsz  0x00000298 flags r--
[…]
Dynamic Section: […]
  BIND_NOW             0x00000000



  

edgebsd/hardening

● Package meant to test a local pkgsrc setup:
https://git.edgebsd.org/gitweb/?p=edgebsd.git;a=tree;f=hardening

$ hardening
[!] Hi! I am a library.
[!] Let's see if I am strong enough...
[+] built with -fPIC
[!] Bye! I am not a library anymore.
[!] Hi! I am an executable.
[+] built with -fPIC, good enough for full ASLR
[+] built with _FORTIFY_SOURCE 2, all good
[+] mmap() failed W|X, good
[-] mmap() gave two identical addresses :(

https://git.edgebsd.org/gitweb/?p=edgebsd.git;a=tree;f=hardening


  

Demo

● Let us pray the demo gods?
● This presentation is the demo
● Userland with every feature mentioned so far

(except Modular Xorg with partial RELRO)
● All the way to LibreOffice 5.3.0.3



  

3. Future work

● Reproducible Builds
● Code Flow Integrity 

(CFI)
● SafeStack
● Address Sanitizer



  

Reproducible Builds

« Reproducible builds are a set of software 
development practices that create a verifiable path from 
human readable source code to the binary code used 
by computers. »

● More at https://reproducible-builds.org/

https://reproducible-builds.org/


  

Reproducible Builds

1.Deterministic build system:
● Always the same result from a given source (including 

the current date and time, ordering of output...)

2.Pre-defined (or recorded) build environment:
● Specific file format for build definitions

3.Let users reproduce and verify the original build



  

Reproducible Builds

● Already implemented in FreeBSD’s ports:
– Initial patch takes the timestamp from distinfo

– Specific patches needed as well (Perl...)
● Can affect many aspects of the build process:

– Build environment: setting $SOURCE_DATE_EPOCH

– Some flags relevant for GCC:
● gcc -Wp,-iremap,…
● gcc -fdebug-prefix-map=…



  

Code Flow Integrity (CFI)

● Prevents exploits from redirecting the execution 
flow of programs

● Controlled crashes instead of undefined behaviour
● Again, pkgsrc should be a great test-bed for this 

feature



  

Code Flow Integrity (Clang)

● Implementation available in Clang:
http://clang.llvm.org/docs/ControlFlowIntegrity.html

● Requires the following in CFLAGS:
-flto -fsanitize=cfi
(individual schemes can be selected)
and possibly -fvisibility=hidden

● Additional debugging information can be obtained
● Suitable for release builds:

– Negligible performance impact

http://clang.llvm.org/docs/ControlFlowIntegrity.html


  

SafeStack (Clang)

● « An instrumentation pass that protects programs against attacks 
based on stack buffer overflows, without introducing any 
measurable performance overhead. It works by separating the 
program stack into two distinct regions: the safe stack and the 
unsafe stack. The safe stack stores return addresses, register 
spills, and local variables that are always accessed in a safe way, 
while the unsafe stack stores everything else. This separation 
ensures that buffer overflows on the unsafe stack cannot be used 
to overwrite anything on the safe stack. »
https://clang.llvm.org/docs/SafeStack.html

● Involves CFLAGS:
-fsanitize=safe-stack

https://clang.llvm.org/docs/SafeStack.html


  

Address Sanitizer (GCC)

● A memory error detector from GCC:
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation
-Options.html

● Instruments memory access instructions
● Detects out-of-bounds and use-after-free bugs
● Involves CFLAGS:
-fsanitize=address
(more schemes are supported)

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


  

Closing words

● pkgsrc is a great project 
for testing security 
features

● Some possibilities can 
already be enabled
could some of them be 
turned on by default?

● A lot more can still be 
done!



  

Thank you!

● BSDCan 2017: 
http://www.bsdcan.org/2017/

● pkgsrc: https://pkgsrc.org/
– The pkgsrc Security Team & the Release 

Engineering Group
● Joyent: https://pkgsrc.joyent.com/

– Jonathan Perkin <jperkin@>
● Devio.us, EdgeBSD, HardenedBSD, 

OpenBSD...
● Contact me at khorben@NetBSD.org
● Time for questions?

http://www.bsdcan.org/2017/
https://pkgsrc.org/
https://pkgsrc.joyent.com/
mailto:khorben@NetBSD.org
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