

Hardening pkgsrc

Securing packages, 17.000 at a time

BSDCan 2017

June 9-10 2017, Ottawa, Canada

Pierre Pronchery
<khorben@NetBSD.org>

mailto:khorben@NetBSD.org

About myself

● Pierre Pronchery, planet Earth
● DeforaOS Project since 2004
● IT-Security consultant since 2006
● NetBSD developer since May 2012
● Working on NetBSD with Git through the EdgeBSD

community since August 2013
● Co-founder of Defora Networks since July 2016:

https://www.defora.net/

https://www.defora.net/

Introduction

● pkgsrc is a multi-platform:
– Software distribution
– Build framework
– Package manager

● Default source for packaged software on
NetBSD, SmartOS, Minix...

● Supports many more!
– Over 17.000 packages on 17+ platforms

Motivation

● As illustrated again in the
news this week, a “cyber-
war” is raging right now

● We have a responsibility
towards our users

● pkgsrc offers a great
opportunity for hardening
a complete software setup

Agenda

1.Security management
Processes in place

2.Hardening features
Technical measures

3.Future work
Perspectives for
improvement

Questions & Answers

1. Security management

1.Teams in charge
● Security Team
● Release Engineering Group

2.Vulnerability assessment database
● Usage from source
● Auditing binary packages

3.Maintenance of the stable release
● Security patches
● Long-Term Support (LTS)

pkgsrc Security Team

● List of duties:
– Handles security issues relevant to pkgsrc:

pkgsrc-security@NetBSD.org
http://pkgsrc.org/pkgsrc-security_pgp_key.asc

– Maintains the vulnerability database:
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vu
lnerabilities.bz2

mailto:pkgsrc-security@NetBSD.org
http://pkgsrc.org/pkgsrc-security_pgp_key.asc
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.bz2
http://cdn.netbsd.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.bz2

Vulnerability database

● Assembled from:
– Release notes from upstream packages
– Security Advisories from vendors (Secunia...)
– Announcements on public mailing-lists (OSS-Security...)
– Erratas or advisories from other distributions,

governmental or technical organisations (MITRE,
CERT...)

● Cryptographically signed (PGP)

Vulnerability assessment

● Configure updates in /etc/daily.conf:

fetch_pkg_vulnerabilities=YES
● To fetch manually:

pkg_admin fetch-pkg-vulnerabilities
-s

● To audit the packages installed:

pkg_admin audit

Vulnerability assessment
(from sources)
sysutils/xenkernel45$ make install
=> Bootstrap dependency digest>=20010302:
found digest-20160304
===> Checking for vulnerabilities in
xenkernel45-4.5.5nb1
Package xenkernel45-4.5.5nb1 has a information-leak
vulnerability, see
http://xenbits.xen.org/xsa/advisory-200.html
[…]
ERROR: Define ALLOW_VULNERABLE_PACKAGES in
/etc/mk.conf or IGNORE_URL in pkg_install.conf(5) if
this package is absolutely essential.
*** Error code 1

Vulnerability assessment
(binary packages)
pkg_add wireshark-2.2.1.tgz
Package wireshark-2.2.1 has a denial-
of-service vulnerability, see
https://www.wireshark.org/security/wn
pa-sec-2016-58.html
[…]
pkg_add: 1 package addition failed

Vulnerability assessment
(binary packages)
● In /etc/pkg_install.conf:

CHECK_VULNERABILITIES=always

● Alternatively, set to interactive to be prompted:

[…]
Do you want to proceed with the
installation of wireshark-2.2.1 [y/n]?
n
Cancelling installation
pkg_add: 1 package addition failed

Security Team members

● Alistair G. Crooks <agc@>
● Daniel Horecki <morr@>
● Sevan Janiyan <sevan@>
● Thomas Klausner <wiz@>
● Tobias Nygren <tnn@>
● Ryo Onodera <ryoon@>
● Fredrik Pettai <pettai@>
● Jörg Sonnenberger <joerg@>
● Tim Zingelman <tez@>

Release Engineering Group

● List of duties:
– Manage stable branches

https://releng.netbsd.org/cgi-bin/req-pkgsrc.cgi
– Process pullup requests

Including security issues
https://www.netbsd.org/developers/releng/pullups.html#
pkgsrc-releng

– Schedule freeze periods
https://www.pkgsrc.org/is-a-freeze-on/

https://releng.netbsd.org/cgi-bin/req-pkgsrc.cgi
https://www.netbsd.org/developers/releng/pullups.html#pkgsrc-releng
https://www.netbsd.org/developers/releng/pullups.html#pkgsrc-releng
https://www.pkgsrc.org/is-a-freeze-on/

Release Engineering Group

Stable releases

● Stable releases happening every quarter:
– 2016Q4 no longer maintained
– 2017Q1 latest stable
– 2017Q2 in progress (HEAD)

● Joyent provides Long-Term Support (LTS)
– joyent/feature/backports/20XXQ4

https://github.com/joyent/pkgsrc
– Focus on SmartOS

https://github.com/joyent/pkgsrc

Release Engineering Group members

● Ryo Onodera <ryoon@>
● Fredrik Pettai <pettai@>
● Eric Schnoebelen

<schnoebe@>
● Benny Siegert

<bsiegert@>
● S.P. Zeidler <spz@>

2. Hardening features

1.Package signatures

2.Stack Smashing
Protection (SSP)

3.Fortify

4.PIE (for ASLR)

5.RELRO and
BIND_NOW

Package signatures

● Support introduced initially in 2001:
– Based on X.509 certificates or GnuPG

● Ensures authenticity and integrity:
– Critical when installing binaries over HTTP or FTP

● Used by Joyent on SmartOS since 2014Q4:
– Patch to use libnetpgpverify instead of GnuPG

● Still using GnuPG to generate packages

Package signatures

● Chicken and egg problem with GnuPG:
– Not available in base
– Needs to be installed as a package to verify itself

● Adding support for netpgp instead:
– Available in NetBSD’s base system
– Command line wrapper available (gpg2netpgp)

– Still requires some patches (work in progress)
– Security issue remaining with detached signatures

Package signatures (creation)

● Generate a key for the user building packages:
$ gpg --gen-key

● In /etc/mk.conf:
SIGN_PACKAGES=gpg

● Optionally, in /etc/pkg_install.conf:
GPG=/usr/pkg/bin/gpg
#GPG=/usr/local/bin/gpg2netpgp
GPG_SIGN_AS=DEADBEEF

● Then use pkgsrc from source normally

Package signatures (installation)

● Import the key for the user installing packages:
gpg --import

● In /etc/pkg_install.conf:
VERIFIED_INSTALLATION=always

● Then use pkgsrc normally:
pkg_add socat
gpg: Signature made Thu Nov 3 14:44:06 2016 CET
using RSA key ID CC245448
gpg: Good signature from "EdgeBSD test packages
(khorben) <root@edgebsd.org>"
Primary key fingerprint: 968C 30DE B3C9 C147 203A
2E6E 5FFC 2014 CC24 5448

mailto:root@edgebsd.org

Stack Smashing Protection (SSP)

● Mitigation: reduce the impact and exploitation of
Buffer Overflow vulnerabilities

● Different memory layout (stack variables)
● Addition of a « canary » value

– Marker to detect memory corruption
– Slight performance penalty
– Controlled crashes instead of Code Execution

Stack Smashing Protection (SSP)

● Supported in pkgsrc for Linux (x86), FreeBSD (x86),
and NetBSD

● Enabled in /etc/mk.conf:
PKGSRC_USE_SSP=yes

● Sets a compilation flag, in the case of GCC and clang:
-fstack-protector
(protects only some functions)

● Requires the package to support CFLAGS
Some packages still do not ☹

Stack Smashing Protection
(challenges)
● Only protects C/C++ programs and interpreters

– JIT compilation is not protected
● Supporting more flags:
-fstack-protector-all
(protects every function, now supported)
-fstack-protector-strong
(balanced, requires patch from Google)

● Add support for more compilers and platforms

Stack Smashing Protection (validation)

● To confirm a binary was successfully compiled with
SSP:

$ nm hello
[…]
 U __stack_chk_fail
00600f00 B __stack_chk_guard

This is specific to GCC on NetBSD
● Enabled by default in OpenBSD (2003), Fedora and

Ubuntu Linux (2006), DragonFlyBSD (2013)

Fortify

● Automatically adds boundary checks:
sprintf(), strncat(), memmove()...

● Completely mitigates some Buffer Overflows
● Involves support from the libc (system headers)

– Negligible performance impact
– Controlled crashes instead of memory corruption

Fortify

● Supported in pkgsrc for Linux and NetBSD (GCC)
● Enabled in /etc/mk.conf:
PKGSRC_USE_FORTIFY=yes

● Sets a pre-processing flag, in the case of GCC:
-D_FORTIFY_SOURCE=2

● Requires the package to support CFLAGS
Just like SSP ☹

Fortify (challenges)

● Only protects C/C++ programs and interpreters
– Again JIT compilation is not protected
– Requires an optimization level of 1 or more (e.g. -O2)

● Supporting more levels now possible in pkgsrc:
-D_FORTIFY_SOURCE=l
(protects fewer cases)
-D_FORTIFY_SOURCE=2
(some conforming programs might fail)

● Add support for more compilers and platforms

Fortify (validation)

● To confirm a binary was successfully compiled with
Fortify:

$ nm hello
[…]
 U __sprintf_chk

This is specific to GCC on NetBSD
● Enabled by default in Ubuntu Linux and Android

Position-Independent Executables
(PIE)
● Necessary companion to PaX ASLR (Address Space

Layout Randomization)
● PaX ASLR enabled by default in NetBSD 8 (incoming!)
● Allow compiled binaries to be re-positioned

dynamically in memory
● Makes exploitation more difficult (requires a memory

leak including pointer values)
● Involves compilation and linking phases

Position-Independent Executables

● Supported in pkgsrc for NetBSD and GCC
● Enabled in /etc/mk.conf:
PKGSRC_MKPIE=yes

● Sets a compilation flag, in the case of GCC:
-fPIC

● Requires the package to support both CFLAGS and
LDFLAGS as well (with a caveat)
Even stricter than SSP and Fortify ☹

Position-Independent Executables
(challenges)
● The compilation flag should really be -fPIE for

executables
● The linking phase must be completed with -pie

but only for executables so not directly through
LDFLAGS

● Currently implemented in the GCC wrapper
● Not supported in cwrappers yet (patch in review)

Position-Independent Executables
(advantages)
● Packages linked but not compiled correctly will fail to

build
● Great way to know which packages do not implement

flags as they should
● Program crashes usually reveal silent bugs
● Can be combined with paxctl otherwise:
NOT_PAX_ASLR_SAFE
NOT_PAX_MPROTECT_SAFE
(see mk/pax.mk)

Position-Independent Executables
(validation)
● To confirm an executable binary is a PIE:

$ file hello-pie
ELF 64-bit LSB shared object, x86-64,
version 1 (SYSV), dynamically linked (uses
shared libs), for NetBSD 7.0, not stripped

$ file hello-nopie
ELF 64-bit LSB executable, x86-64, version
1 (SYSV), dynamically linked (uses shared
libs), for NetBSD 7.0, not stripped

RELRO and BIND_NOW

● RELRO protects ELF executable programs from
tampering at run-time

● Makes exploitation harder by reducing the attack
surface through relocations

● Benefits from immediate binding with BIND_NOW
● Performance penalty when starting big programs
● Involves the linking phase

RELRO and BIND_NOW

● Supported in pkgsrc for Linux and NetBSD (GCC)
● Enabled in /etc/mk.conf:
PKGSRC_USE_RELRO=yes

● Sets two linking flags, in the case of GCC:
-Wl,-z,relro -Wl,-z,now

● Requires the package to support LDFLAGS

RELRO and BIND_NOW (challenges)

● More granularity is now supported:
– Full, or
– Partial (without BIND_NOW)

● Some packages break at run-time with full RELRO
(e.g. Xorg)

● Could be adapted to more platforms
● Same issue as before with support from packages
☹

RELRO and BIND_NOW (validation)

● To confirm a binary was built with RELRO and BIND_NOW:

$ objdump -x hello
[…]
Program Header: […]
 RELRO off 0x00000d68
 vaddr 0x00600d68
 paddr 0x00600d68 align 2**0
 filesz 0x00000298
 memsz 0x00000298 flags r--
[…]
Dynamic Section: […]
 BIND_NOW 0x00000000

edgebsd/hardening

● Package meant to test a local pkgsrc setup:
https://git.edgebsd.org/gitweb/?p=edgebsd.git;a=tree;f=hardening

$ hardening
[!] Hi! I am a library.
[!] Let's see if I am strong enough...
[+] built with -fPIC
[!] Bye! I am not a library anymore.
[!] Hi! I am an executable.
[+] built with -fPIC, good enough for full ASLR
[+] built with _FORTIFY_SOURCE 2, all good
[+] mmap() failed W|X, good
[-] mmap() gave two identical addresses :(

https://git.edgebsd.org/gitweb/?p=edgebsd.git;a=tree;f=hardening

Demo

● Let us pray the demo gods?
● This presentation is the demo
● Userland with every feature mentioned so far

(except Modular Xorg with partial RELRO)
● All the way to LibreOffice 5.3.0.3

3. Future work

● Reproducible Builds
● Code Flow Integrity

(CFI)
● SafeStack
● Address Sanitizer

Reproducible Builds

« Reproducible builds are a set of software
development practices that create a verifiable path from
human readable source code to the binary code used
by computers. »

● More at https://reproducible-builds.org/

https://reproducible-builds.org/

Reproducible Builds

1.Deterministic build system:
● Always the same result from a given source (including

the current date and time, ordering of output...)

2.Pre-defined (or recorded) build environment:
● Specific file format for build definitions

3.Let users reproduce and verify the original build

Reproducible Builds

● Already implemented in FreeBSD’s ports:
– Initial patch takes the timestamp from distinfo

– Specific patches needed as well (Perl...)
● Can affect many aspects of the build process:

– Build environment: setting $SOURCE_DATE_EPOCH

– Some flags relevant for GCC:
● gcc -Wp,-iremap,…
● gcc -fdebug-prefix-map=…

Code Flow Integrity (CFI)

● Prevents exploits from redirecting the execution
flow of programs

● Controlled crashes instead of undefined behaviour
● Again, pkgsrc should be a great test-bed for this

feature

Code Flow Integrity (Clang)

● Implementation available in Clang:
http://clang.llvm.org/docs/ControlFlowIntegrity.html

● Requires the following in CFLAGS:
-flto -fsanitize=cfi
(individual schemes can be selected)
and possibly -fvisibility=hidden

● Additional debugging information can be obtained
● Suitable for release builds:

– Negligible performance impact

http://clang.llvm.org/docs/ControlFlowIntegrity.html

SafeStack (Clang)

● « An instrumentation pass that protects programs against attacks
based on stack buffer overflows, without introducing any
measurable performance overhead. It works by separating the
program stack into two distinct regions: the safe stack and the
unsafe stack. The safe stack stores return addresses, register
spills, and local variables that are always accessed in a safe way,
while the unsafe stack stores everything else. This separation
ensures that buffer overflows on the unsafe stack cannot be used
to overwrite anything on the safe stack. »
https://clang.llvm.org/docs/SafeStack.html

● Involves CFLAGS:
-fsanitize=safe-stack

https://clang.llvm.org/docs/SafeStack.html

Address Sanitizer (GCC)

● A memory error detector from GCC:
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation
-Options.html

● Instruments memory access instructions
● Detects out-of-bounds and use-after-free bugs
● Involves CFLAGS:
-fsanitize=address
(more schemes are supported)

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Closing words

● pkgsrc is a great project
for testing security
features

● Some possibilities can
already be enabled
could some of them be
turned on by default?

● A lot more can still be
done!

Thank you!

● BSDCan 2017:
http://www.bsdcan.org/2017/

● pkgsrc: https://pkgsrc.org/
– The pkgsrc Security Team & the Release

Engineering Group
● Joyent: https://pkgsrc.joyent.com/

– Jonathan Perkin <jperkin@>
● Devio.us, EdgeBSD, HardenedBSD,

OpenBSD...
● Contact me at khorben@NetBSD.org
● Time for questions?

http://www.bsdcan.org/2017/
https://pkgsrc.org/
https://pkgsrc.joyent.com/
mailto:khorben@NetBSD.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

