
FIDO and Webauthn on BSD:
Authentication for the easily distracted

Taylor R Campbell
riastradh@NetBSD.org

EuroBSDcon 2023
Coimbra, Portugal
September 17, 2023



FIDO and Webauthn on BSD

https://www.NetBSD.org/gallery/presentations/

riastradh/eurobsdcon2023/fidobsd.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2023/fidobsd.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2023/fidobsd.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2023/fidobsd.pdf


Why do we need a new authentication

system?



Hook

Date: Sun, 17 Sep 2023 13:20:59 +0000

From: "EuroBSDcon (via Google Drive)"

<eurobsdcon@gmail.com>

To: riastradh@gmail.com

Subject: Folder shared with you: "Conference program"

I’ve shared an item with you:

Conference program

https://drive.googIe.com/drive/folders/

Gb5Z_sYiHuiqUClpeCISutMRc3rMmzZAg?

usp=sharing&invite=vigcIJy&ts=6ff7f21e

It’s not an attachment -- it’s stored online.

To open this item, just click the link above.



Line



Sinker



You’ve been phished!



Two-factor authentication

Prove at least two:

▶ something you know (password, security question)

▶ something you have (phone, USB token, smart card)

▶ something you are



Two-factor authentication

Prove at least two:

▶ something you know (password, security question)

▶ something you have (phone, USB token, smart card)

▶ something you are (a BSD nerd)



Two-factor authentication

Prove at least two:

▶ something you know (password, security question)

▶ something you have (phone, USB token, smart card)

▶ something you are (a BSD nerd)



Two-factor authentication

Prove at least two:

▶ something you know (password, security question)

▶ something you have (phone, USB token, smart card)

▶ something you are (biometrics: retina, fingerprint, . . . )



Two-factor authentication

Typical 2FA:

▶ 2FA codes sent over SMS to your phone

▶ Authenticator app, usually meaning TOTP (RFC 6238/4226)
stored on phone

▶ Push notifications to your phone, usually Microsoft or Duo
proprietary



Two-factor phishing: TOTP codes, SMS 2FA codes



Two-factor phishing: push notifications

(screenshot of notification left as an exercise for the reader)



Two-factor phishing

▶ 2FA codes sent over SMS

▶ . . . are gathered by the same phishing page and relayed on by
the attacker

▶ TOTP codes

▶ . . . are gathered by the same phishing page and relayed on by
the attacker

▶ Push notifications

▶ . . . are sent when the password you entered into the phishing
page is relayed on by the attacker

▶ . . . lead to notification fatigue



Two-factor phishing

▶ 2FA codes sent over SMS
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ TOTP codes

▶ . . . are gathered by the same phishing page and relayed on by
the attacker

▶ Push notifications

▶ . . . are sent when the password you entered into the phishing
page is relayed on by the attacker

▶ . . . lead to notification fatigue



Two-factor phishing

▶ 2FA codes sent over SMS
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ TOTP codes
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ Push notifications

▶ . . . are sent when the password you entered into the phishing
page is relayed on by the attacker

▶ . . . lead to notification fatigue



Two-factor phishing

▶ 2FA codes sent over SMS
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ TOTP codes
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ Push notifications
▶ . . . are sent when the password you entered into the phishing

page is relayed on by the attacker

▶ . . . lead to notification fatigue



Two-factor phishing

▶ 2FA codes sent over SMS
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ TOTP codes
▶ . . . are gathered by the same phishing page and relayed on by

the attacker

▶ Push notifications
▶ . . . are sent when the password you entered into the phishing

page is relayed on by the attacker
▶ . . . lead to notification fatigue



Two-factor phishing

Main problem: copying & pasting secrets not bound to origin



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention

▶ Message to security people: Be an enabler. Don’t get in the
way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention

▶ Message to security people: Be an enabler. Don’t get in the
way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention

▶ Message to security people: Be an enabler. Don’t get in the
way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention

▶ Message to security people: Be an enabler. Don’t get in the
way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention

▶ Message to security people: Be an enabler. Don’t get in the
way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention
▶ Message to security people: Be an enabler. Don’t get in the

way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Threat models

1. Phishing

2. Phishing

3. Phishing

4. User fatigue and circumvention
▶ Message to security people: Be an enabler. Don’t get in the

way; enable people to get their work done with less risk.

5. Hardware theft, MITM attacks, shoulder surfing, . . .



Hardware tokens

▶ RSA SecurID—proprietary version of TOTP on a gizmo with
an LCD display

▶ Old Yubikeys—USB keyboard that types a proprietary version
of TOTP token

▶ PKCS#11, PKCS#15, OpenPGP, . . .



Legacy crypto tokens

▶ Software stack

1. security/pcsc-lite—daemon that talks to USB smartcard-like
reader (pcscd)

2. security/opensc—library and tools that talk to smartcard
through pcsc-lite

3. security/ccid—opensc driver that talks to chip/smart card
interface driver devices

▶ proprietary magic protocols and file layout:
https://github.com/OpenSC/OpenSC/pull/2097

▶ limited number of keys per device

▶ state management

▶ privacy leaks across sites

https://wiki.NetBSD.org/tutorials/howto_bootstrap_

the_ePass2003_smartcard/

https://github.com/OpenSC/OpenSC/pull/2097
https://wiki.NetBSD.org/tutorials/howto_bootstrap_the_ePass2003_smartcard/
https://wiki.NetBSD.org/tutorials/howto_bootstrap_the_ePass2003_smartcard/


FIDO will protect us from the phish



Live demo



Protocol flow—Registration

1. Server at example.com asks to make a credential

2. Browser asks user to tap button to approve

3. Device generates credential id and key pair for ‘example.com’

4. Device returns credential id and public key

5. Server stores credential id and public key for later use

Note: Every registration creates an independent random key
pair—key generation with elliptic-curve crypto is cheap!



Protocol flow—Authentication

1. Server at example.com sends a challenge and stored credential
ids and asks for proof of one of them

2. Browser asks user to tap button to approve

3. Device re-derives key pair from credential id for ‘example.com’

4. Device returns signature on challenge

5. Server verifies signature with stored publickey



Properties

▶ Independent keys for each site—no cross-site tracking

▶ No special software, drivers, configuration tools needed

▶ No user-visible state to manage on device

▶ Unbounded number of credentials

▶ Used as 2FA: vendor is not single point of failure



Privacy leaks

Privacy leaks are much more limited than traditional hardware
tokens with X.509 client certificates:

▶ On registration: device may send attestation of manufacturer
and batch number (not serial number!)—up to browser

▶ On authentication: device may send signature count—up to
device

▶ Server can tell if same device is used for multiple accounts



Recommendations for users

Get two devices:

▶ Primary on keychain or always plugged into laptop

▶ Backup in desk or somewhere safe

If you lose one, no big deal—get a new one and use the backup to
log in and register it.

▶ . . . And don’t use PINs: bad user experience, limited software
support, requires special tooling



Recommendations for users

Get two devices:

▶ Primary on keychain or always plugged into laptop

▶ Backup in desk or somewhere safe

If you lose one, no big deal—get a new one and use the backup to
log in and register it.

▶ . . . And don’t use PINs: bad user experience, limited software
support, requires special tooling



How to add web application support—Registration

const credential = await navigator.credentials.create({

publicKey: {

challenge: ...,

rp: {name: "Example GmbH", id: "example.com"},

pubKeyCredParams: [{alg: -7, type: "public-key"}],

authenticatorSelection: {

authenticatorAttachment: "cross-platform"

},

excludeCredentials: [...],

timeout: 60000,

...

}

})

Returns structure with credential id, public key, optional device
attestation.

More info: https://webauthn.guide

https://webauthn.guide


How to add web application support—Authentication

const credential = await navigator.credentials.get({

publicKey: {

challenge: ...,

allowedCredentials: [{

id: credential_id0, ...

}],

...

}

})

Returns structure with proof of ownership of one of the allowed
credentials.

More info: https://webauthn.guide

https://webauthn.guide


How to add web application support

Various existing Webauthn libraries to handle data structures and
verify credentials on the server side

More info: https://webauthn.guide

https://webauthn.guide
https://webauthn.guide


Sites that support Webauthn

https://dongleauth.com

https://dongleauth.com
https://webauthn.guide


FIDO on BSD



BSD support in kernel: USB HID

▶ Main transport: USB HID, like USB keyboard/mouse devices

▶ No special drivers needed—simple input/output ‘report’ pipes

▶ Other transports: smartcard, NFC—kind of works on BSD but
requires pcsc

▶ (unsure if FIDO over Bluetooth works on BSD)



BSD support in userland: libfido2

▶ libfido2: C library for talking to FIDO devices

▶ Maintained by Yubico

▶ Supports NetBSD, OpenBSD, FreeBSDout of the box

▶ libfido2 available in pkgsrc/ports, shipped in NetBSD base



BSD support in browser: Firefox, authenticator-rs

▶ authenticator-rs: Rust crate for talking to FIDO devices

▶ Maintained by Mozilla

▶ Used by Firefox

▶ Supports NetBSD and FreeBSD out of the box
▶ OpenBSD support may be broken, needs maintainer:

https://github.com/mozilla/authenticator-rs/pull/234

https://github.com/mozilla/authenticator-rs/pull/234
https://github.com/mozilla/authenticator-rs/pull/234


FIDO in OpenSSH

▶ Different from usual FIDO—similar to usual OpenSSH

▶ $ ssh-keygen -t ecdsa-sk

▶ Keep id ecdsa-sk private as usual

▶ Copy id ecdsa-sk.pub to ~/.ssh/authorized keys on server to
register as usual

▶ Tap device to authenticate on login

▶ Alternative—resident keys/discoverable credentials:
▶ No need to keep id ecdsa-sk
▶ Requires newer FIDO keys
▶ Limited storage per device



FIDO in OpenSSH

▶ Different from usual FIDO—similar to usual OpenSSH

▶ $ ssh-keygen -t ecdsa-sk

▶ Keep id ecdsa-sk private as usual

▶ Copy id ecdsa-sk.pub to ~/.ssh/authorized keys on server to
register as usual

▶ Tap device to authenticate on login
▶ Alternative—resident keys/discoverable credentials:

▶ No need to keep id ecdsa-sk
▶ Requires newer FIDO keys
▶ Limited storage per device



Other platforms

All major desktop and mobile operating systems and browsers
support FIDO out of the box!



Other cool things with FIDO



‘Storing’ disk encryption keys—fidocrypt(1)

https://github.com/riastradh/fidocrypt

▶ Enroll multiple devices to have access to a secret

▶ Works with legacy U2F devices and modern FIDO2 devices

▶ Needs no storage on device—stored as per-device ciphertexts
in a cryptfile

▶ (Might change file format to lighten executable, will provide
upgrade path)

https://github.com/riastradh/fidocrypt
https://github.com/riastradh/fidocrypt


Using FIDO to sign messages—fidosig(1)

https://github.com/riastradh/fidosig

▶ fidosig(1): Sign arbitrary messages with FIDO devices

▶ Easily configurable threshold signature policies

▶ Binary format, no temptation to act on unauthenticated data

▶ [Experimental]

https://github.com/riastradh/fidosig
https://github.com/riastradh/fidosig


Using FIDO to sign messages—OpenSSH

▶ Use ecdsa-sk, ed25519-sk keys with OpenSSH:
ssh-keygen -Y sign



Using FIDO with Age to send encrypted messages

https://github.com/riastradh/age-plugin-fido

▶ Plugin for Age encryption tool:
https://age-encryption.org

▶ Requires newer FIDO2 devices (but no state or PINs)

▶ [Experimental]

https://github.com/riastradh/age-plugin-fido
https://age-encryption.org
https://github.com/riastradh/age-plugin-fido


Kerberos and FIDO

▶ Traditional Kerberos single-sign-on uses password to get SSO
tickets

▶ New PA-REDHAT-PASSKEY preauthentication protocol adds
2FA step with FIDO

▶ Very new, not widely supported, maybe soon in Heimdal and
MIT Kerberos!



Questions?


